DF. P H = 1 2. H F. D H 10 3. P H = 10 2 .10 P H = 10 2 3 Γ— 3 3 P H = 10 3 6 Jadi, jarak titik H ke garis DF adalah 10 3 6. Contoh 4. (Latihan 1.2 Matematika Wajib Kelas 12) Diketahui kubus ABCD.EFGH dengan rusuk 8 cm. Titik M adalah titik tengah BC. Tentukan jarak M ke EG. Pembahasan: Jarak titik M ke garis EG adalah panjang garis MN. Kelas 12 SMADimensi TigaJarak Titik ke GarisPada kubus ABCD EFGH yang panjang rusuknya 6 cm, jarak titik H ke DF adalah . . . .Jarak Titik ke GarisDimensi TigaGEOMETRIMatematikaRekomendasi video solusi lainnya0156Diketahui kubus dengan panjang rusuk 6 cm. Jara...0148Diketahui kubus ABCD. EFGH dengan panjang rusuk 8 cm. Jar...0157Diketahui kubus dengan panjang rusuk 10 cm. Tit...0140Diketahui kubus ABCD EFGH dengan panjang rusuk 6 cm. Jara...Teks videoUntuk mengerjakan soal ini kita lihat kubus abcdefgh dengan rusuk nya 6 kemudian kita diminta mencari jarak dari titik h ke DF jadi kita buat segitiga deh kita mencari jahat hahaha kan jadi segitiga DHF jadi seperti ini ya. Jadi itu adalah diagonal bidang jadi 6 akar 2 d adalah kutub jadi 6 DM adalah diagonal jadi 6 akar 3 untuk mencari hahaha keren kita gunakan aturan luas segitiga jadi luas itu adalah setengah kali 6 kali 6 akar 2 = setengah X hahaha kan kali yaitu 6 akar 3 sehingga Tengah dan 6 yang bisa kita menjadi hahaha kan adalah 6 √ 2 dibagi √ 3 * akar 3 per akar 3 setara sional kan √ 3 * √ 3 menjadi 3 dengan 6 jadi 2 ini didapatkan jawabannya adalah 2 √ 6 cm dan ini adalah Opi D sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul

Jaraktitik A ke garis g adalah panjang dari AP. Jadi, jarak antara titik dengan garis merupakan panjang ruas garis yang ditarik dari titik tersebut tegak lurus terhadap garis itu. Untuk memantapkan pemahaman Anda tentang jarak titik ke garis pada bangun ruang dimensi tiga, silahkan perhatikan contoh soal berikut ini.

Berikut ini adalah Kumpulan Soal Jarak Titik ke Garis pada Dimensi Tiga dan Pembahasannya. Bagi adik-adik silahkan dipelajari dan jangan lupa share/bagikan ke media sosial kalian, agar manfaat postingan ini dapat dirasakan oleh siswa/i yang lain. Terima Cara Belajar Cobalah mengerjakan soal-soal yang tersedia secara mandiri. Setelah itu cocokkanlah jawaban kamu dengan pembahasan yang telah disediakan, dengan cara klik "LIHAT/TUTUP". SELAMAT BELAJAR Soal No. 1 Diketahui kubus rusuk-rusuknya 10 cm. Jarak titik F ke garis AC adalah … cm. A $3\sqrt{5}$ B $5\sqrt{2}$ C $5\sqrt{6}$ D $10\sqrt{2}$ E $10\sqrt{6}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Dari gambar, jarak titik F ke garis AC adalah jarak titik F ke titik Q yaitu panjang ruas garis FQ. Perhatikan segitiga ACF, AC = CF = AF = $10\sqrt{2}$ diagonal sisi kubus. Karena AF = CF maka garis tinggi FQ membagi dua sama panjang garis AC, sehingga diperoleh $\begin{align}AQ &= \frac{1}{2}AC \\ &= \frac{1}{2}.10\sqrt{2} \\ AQ &= 5\sqrt{2} \end{align}$ Pada segitiga AQF siku-siku di Q maka $\begin{align}FQ &= \sqrt{AF^2-AQ^2} \\ &= \sqrt{10\sqrt{2}^2-5\sqrt{2}^2} \\ &= \sqrt{200-50} \\ &= \sqrt{150} \\ FQ &= 5\sqrt{6} \end{align}$ Jadi, jarak titik F ke garis AC adalah $5\sqrt{6}$ cm. Jawaban C Soal No. 2 Diketahui kubus dengan panjang rusuk 6 cm. Jarak titik H ke garis DF adalah … cm. A $3\sqrt{5}$ B $2\sqrt{6}$ C $\sqrt{6}$ D $2\sqrt{3}$ E $\sqrt{3}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik H ke garis DF adalah panjang ruas garis HP. HF adalah diagonal sisi kubus, maka $HF=s\sqrt{2}=6\sqrt{2}$ DF adalah diagonal ruang kubus, maka $DF=s\sqrt{3}=6\sqrt{3}$ Perhatikan segitiga DHF, dengan menggunakan rumus luas segitiga maka $\begin{align}\frac{1}{2}. &= \frac{1}{2}. \\ HP &= \frac{ \\ &= \frac{6\times 6\sqrt{2}}{6\sqrt{3}} \\ &= \frac{6\sqrt{2}}{\sqrt{3}}\times \frac{\sqrt{3}}{\sqrt{3}} \\ HP &= 2\sqrt{6} \end{align}$ Cara alternatif Jarak titik sudut kubus titik H ke diagonal ruang kubus garis DF adalah $\frac{s}{3}\sqrt{6} = \frac{6}{3}\sqrt{6} = 2\sqrt{6}$. Jawaban B Soal No. 3 Diketahui kubus dengan panjang rusuk 8 cm. Titik M adalah titik tengah rusuk BC. Jarak titik M ke garis EG adalah … cm. A 6 B $6\sqrt{2}$ C $6\sqrt{3}$ D $6\sqrt{6}$ E 12Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik M ke garis EG adalah panjang ruas garis MP. Perhatikan segitiga EBM. BE adalah diagonal sisi kubus, maka $BE=s\sqrt{2}=8\sqrt{2}$ $\begin{align}EM &= \sqrt{BE^2+BM^2} \\ &= \sqrt{8\sqrt{2}^2+4^2} \\ &= \sqrt{128+16} \\ &= \sqrt{144} \\ EM &= 12 \end{align}$ Perhatikan segitiga MCG. $\begin{align}GM &= \sqrt{CM^2+CG^2} \\ &= \sqrt{4^2+8^2} \\ &= \sqrt{16+64} \\ &= \sqrt{80} \\ GM &= 4\sqrt{5} \end{align}$ Perhatikan segitiga MEG, dengan menggunakan aturan cosinus maka $\begin{align}\cos \angle MEG &= \frac{EG^2+EM^2-GM^2}{ \\ &= \frac{8\sqrt{2}^2+12^2-4\sqrt{5}^2}{ \\ &= \frac{128+144-80}{192\sqrt{2}} \\ &= \frac{192}{192\sqrt{2}}\times \frac{\sqrt{2}}{\sqrt{2}} \\ \cos \angle MEG &= \frac{1}{2}\sqrt{2} \\ \angle MEG &= 45^\circ \end{align}$ Perhatikan segitiga MEG, dengan menggunakan rumus luas segitiga maka $\begin{align}\frac{1}{2}. &= \frac{1}{2}. \angle MEG \\ MP &= EM.\sin 45^\circ \\ MP &= 12.\frac{1}{2}\sqrt{2} \\ MP &= 6\sqrt{2} \end{align}$ Jawaban B Soal No. 4 Diketahui kubus dengan panjang rusuk $\sqrt{3}$ cm dan titik T pada garis AD dengan panjang AT = 1 cm. Jarak titik A ke garis BT adalah … cm. A $\frac{1}{2}$ B $\frac{1}{3}\sqrt{3}$ C $\frac{1}{2}\sqrt{3}$ D 1 E $\frac{2}{3}\sqrt{3}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Perhatikan segitiga TAB, siku-siku di A maka $\begin{align}BT &= \sqrt{AB^2+AT^2} \\ &= \sqrt{\sqrt{3}^2+1^2} \\ BT &= 2 \end{align}$ Jarak titik A ke garis BT adalah panjang AP. $\begin{align}AP &= \frac{AB\times AT}{BT} \\ &= \frac{\sqrt{3}\times 1}{2} \\ AP &= \frac{1}{2}\sqrt{3} \end{align}$ Jawaban C Soal No. 5 Pada kubus dengan panjang rusuk 4 cm, titik P terletak di tengah-tengah EH. Jarak titik P ke garis BG adalah ... cm. A $2\sqrt{2}$ B $2\sqrt{3}$ C $3\sqrt{2}$ D $3\sqrt{3}$ E $2\sqrt{5}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik P ke garis BG adalah panjang ruas garis PQ. Perhatikan segitiga BEP, siku-siku di titik E. BE adalah diagonal sisi kubus, maka $BE=s\sqrt{2}=4\sqrt{2}$ $\begin{align}BP &= \sqrt{BE^2+EP^2} \\ &= \sqrt{4\sqrt{2}^2+2^2} \\ &= \sqrt{32+4} \\ &= \sqrt{36} \\ BP &= 6 \end{align}$ Perhatikan segitiga PHG, siku-siku di titik H. $\begin{align}PG &= \sqrt{HP^2+HG^2} \\ &= \sqrt{2^2+4^2} \\ &= \sqrt{20} \\ PG &= 2\sqrt{5} \end{align}$ BG adalah diagonal sisi kubus, maka $BG=s\sqrt{2}=4\sqrt{2}$ Perhatikan segitiga BGP Arutan cosinus $\begin{align}\cos \angle BGP &= \frac{BG^2+GP^2-BP^2}{ \\ &= \frac{4\sqrt{2}^2+2\sqrt{5}^2-6^2}{ \\ &= \frac{32+20-36}{16\sqrt{10}} \\ &= \frac{16}{16\sqrt{10}} \\ \cos \angle BGP &= \frac{1}{\sqrt{10}} \end{align}$ $\sin \angle BGP = \frac{\sqrt{\sqrt{10}^2-1^2}}{\sqrt{10}} = \frac{3}{\sqrt{10}}$ Dengan menggunakan luas segitiga BPG maka $\begin{align}\frac{1}{2}. &= \frac{1}{2}. \angle BGP \\ PQ &= GP.\sin \angle BGP \\ &= 2\sqrt{5}.\frac{3}{\sqrt{10}} \\ &= \frac{6}{\sqrt{2}}\times \frac{\sqrt{2}}{\sqrt{2}} \\ PQ &= 3\sqrt{2} \end{align}$ Jawaban C Soal No. 6 Diketahui kubus dengan panjang rusuknya 6 cm. Jika titik P berada pada perpanjangan garis HG sehingga HG = GP, maka jarak titik G ke garis AP adalah ... cm. A $\sqrt{6}$ B $2\sqrt{3}$ C $2\sqrt{6}$ D $4\sqrt{3}$ E $4\sqrt{6}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik G ke garis AP adalah panjang ruas garis GQ. AH adalah diagonal sisi kubus, maka $AH=s\sqrt{2}=6\sqrt{2}$ $\begin{align}AP &= \sqrt{AH^2+HP^2} \\ &= \sqrt{\left 6\sqrt{2} \right^2+12^2} \\ &= \sqrt{72+144} \\ &= \sqrt{216} \\ AP &= 6\sqrt{6} \end{align}$ Segitiga AHP sebangun dengan segitiga GQP, maka perbandingan sisi-sisi yang bersesuaian adalah $\begin{align}\frac{GQ}{AH} &= \frac{GP}{AP} \\ \frac{GQ}{6\sqrt{2}} &= \frac{6}{6\sqrt{3}} \\ GQ &= \frac{6\sqrt{2}}{\sqrt{3}}\times \frac{\sqrt{3}}{\sqrt{3}} \\ GQ &= 2\sqrt{6} \end{align}$ Jawaban C Soal No. 7 Panjang rusuk kubus adalah 5 cm. Jarak titik G ke diagonal HB adalah ... cm. A $\frac{5}{3}\sqrt{6}$ B $\frac{4}{3}\sqrt{6}$ C $\sqrt{6}$ D $\frac{2}{3}\sqrt{6}$ E $\frac{1}{3}\sqrt{6}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik G ke garis HB adalah panjang ruas garis GP. Perhatikan segitiga BCG siku-siku di titik C, maka $\begin{align}BG &= \sqrt{BC^2+CG^2} \\ &= \sqrt{5^2+5^2} \\ &= \sqrt{50} \\ BG &= 5\sqrt{2} \end{align}$ Perhatikan segitiga BGH siku-siku di titik G, maka $\begin{align}HB &= \sqrt{BG^2+GH^2} \\ &= \sqrt{\left 5\sqrt{2} \right^2+5^2} \\ &= \sqrt{50+25} \\ &= \sqrt{75} \\ HB &= 5\sqrt{3} \end{align}$ Luas segitiga BGH $\begin{align}\frac{1}{2}. &= \frac{1}{2}. \\ &= \\ 5\sqrt{3}.GP &= \\ GP &= \frac{5\sqrt{2}}{\sqrt{3}}\times \frac{\sqrt{3}}{\sqrt{3}} \\ GP &= \frac{5}{3}\sqrt{6} \end{align}$ Jadi, jarak titik G ke garis HB adalah $\frac{5}{3}\sqrt{6}$ cm. Jawaban A Soal No. 8 Kubus dengan AB = 6, jarak titik B ke diagonal AG adalah ... A $5\sqrt{6}$ B $4\sqrt{6}$ C $3\sqrt{6}$ D $2\sqrt{6}$ E $\sqrt{2}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik B ke garis AG adalah panjang ruas garis BP. Perhatikan segitiga BCG siku-siku di titik C, maka $\begin{align}BG^2 &= BC^2+CG^2 \\ &= 6^2+6^2 \\ BG^2=72 \end{align}$ Perhatikan segitiga ABG siku-siku di titik B, maka $\begin{align}AG &= \sqrt{AB^2+BG^2} \\ &= \sqrt{6^2+\left 6\sqrt{2} \right^2} \\ &= \sqrt{36+72} \\ &= \sqrt{108} \\ AG &= 6\sqrt{3} \end{align}$ Luas segitiga ABG $\begin{align}\frac{1}{2}. &= \frac{1}{2}. \\ &= \\ 6\sqrt{3}.BP &= \\ BP &= \frac{6\sqrt{2}}{\sqrt{3}}\times \frac{\sqrt{3}}{\sqrt{3}} \\ BP &= 2\sqrt{6} \end{align}$ Jawaban D Soal No. 9 Limas beraturan dengan panjang rusuk alas 12 cm dan panjang rusuk tegak $12\sqrt{2}$ cm. Jarak titik A ke garis TC adalah ... cm A $6\sqrt{6}$ B $2\sqrt{10}$ C $2\sqrt{11}$ D $4\sqrt{3}$ E $2\sqrt{13}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik A ke garis TC adalah panjang ruas garis AK. perhatikan segitiga ABC siku-siku di titik C maka $\begin{align}AC &= \sqrt{AB^2+BC^2} \\ &= \sqrt{12^2+12^2} \\ &= \sqrt{{{ \\ AC &= 12\sqrt{2} \end{align}$ Perhatikan segitiga TAC AT = $12\sqrt{2}$, $AC=12\sqrt{3}$ Karena AT = AC dan AK adalah garis tinggi terhadap TC, maka AK membagi dua sama panjang garis TC sehingga kita peroleh $\begin{align}CK &= \frac{1}{2}TC \\ &= \frac{1}{2}.12\sqrt{2} \\ CK &= 6\sqrt{2} \end{align}$ Perhatikan segitiga AKC siku-siku di titik K maka berlaku pythagoras $\begin{align}AK &= \sqrt{AC^2-CK^2} \\ &= \sqrt{\left 12\sqrt{2} \right^2-\left 6\sqrt{2} \right^2} \\ &= \sqrt{288-72} \\ &= \sqrt{216} \\ AK &= 6\sqrt{6} \end{align}$ Jadi, jarak titik A ke garis TC adalah $6\sqrt{6}$ cm. Jawaban A Soal No. 10 Kubus dengan AB = 6 cm, titik P berada di tengah-tengah FG, maka jarak titik A ke garis DP adalah ... cm. A 6 B $6\sqrt{2}$ C $6\sqrt{3}$ D $6\sqrt{6}$ E $4\sqrt{2}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik A ke garis DP adalah panjang ruas garis AQ. AF adalah diagonal sisi kubus maka $AF=s\sqrt{2}=6\sqrt{2}$ Perhatikan segitiga PRD siku-siku di titik R maka $PR=AF=6\sqrt{2}$ $\begin{align}PD &= \sqrt{PR^2+RD^2} \\ &= \sqrt{\left 6\sqrt{2} \right^2+3^2} \\ &= \sqrt{72+9} \\ &= \sqrt{81} \\ PD &= 9 \end{align}$ Perhatikan segitiga APD, maka luas segitiga APD $\begin{align}\frac{1}{2}. &= \frac{1}{2}. \\ &= \\ &= \\ AD &= 6 \end{align}$ Jawaban A Soal No. 11 Diketahui kubus dengan panjang rusuk 6 cm. Jika T titik tengah HG, R titik tengah CG, maka jarak R ke BT adalah ... cm A $\sqrt{10}$ B $3\sqrt{5}$ C $\frac{9}{5}$ D $3\sqrt{2}$ E 3Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik R ke garis BT adalah panjang ruas garis PR. Segitiga BCR siku-siku di titik C, maka $\begin{align}BR &= \sqrt{BC^2+CR^2} \\ &= \sqrt{6^2+3^2} \\ &= \sqrt{36+9} \\ &= \sqrt{45} \\ BR &= 3\sqrt{5} \end{align}$ Segitiga RGT siku-siku di titik G, maka $\begin{align}RT &= \sqrt{RG^2+GT^2} \\ &= \sqrt{3^2+3^2} \\ &= \sqrt{18} \\ RT &= 3\sqrt{2} \end{align}$ BG diagonal sisi kubus, maka $BG=6\sqrt{2}$. Segitiga BGT siku-siku di titik G, maka $\begin{align}BT &= \sqrt{BG^2+GT^2} \\ &= \sqrt{\left 6\sqrt{2} \right^2+3^2} \\ &= \sqrt{72+9} \\ &= \sqrt{81} \\ BT &= 9 \end{align}$ Pada segitiga BRT, berlaku aturan cosinus sebagai berikut $\begin{align}\cos \angle RBT &= \frac{BR^2+BT^2-RT^2}{ \\ &= \frac{\left 3\sqrt{5} \right^2+9^2-\left 3\sqrt{2} \right^2}{ \\ &= \frac{45+81-18}{54\sqrt{5}} \\ &= \frac{108}{54\sqrt{5}} \\ \cos \angle RBT &= \frac{2}{\sqrt{5}} \end{align}$ Dengan perbandingan trigonometri diperoleh $\sin \angle RBT = \frac{\sqrt{\sqrt{5}^2-2^2}}{\sqrt{5}} = \frac{1}{\sqrt{5}}$ Luas segitiga RBT $\begin{align}\frac{1}{2}. &= \frac{1}{2}. \angle RBT \\ PR &= BR.\sin \angle RBT \\ PR &= 3\sqrt{5}.\frac{1}{\sqrt{5}} \\ PR &= 3 \end{align}$ Jadi, jarak titik R ke BT adalah 3 cm. Jawaban E Soal No. 12 SIMAK UI 2009 Kode 934. Diketahui kubus dengan panjang sisi 5 cm. Jarak titik B ke diagonal EG adalah ... cm. A $\frac{5}{2}\sqrt{3}$ B $\frac{5}{2}\sqrt{6}$ C $5\sqrt{3}$ D $128\sqrt{3}$ E $3\sqrt{2}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik B ke diagonal EG adalah panjang ruas garis BP. BE, BG, dan EG adalah diagonal sisi kubus maka BE = BG = EG = $s\sqrt{2}=5\sqrt{2}$ Karena BE = BG dan BP adalah garis tinggi terhadap sisi EG maka BP membagi dua sama panjang garis EG sehingga diperoleh $\begin{align}EP &= \frac{1}{2}EG \\ &= \frac{1}{2}.5\sqrt{2} \\ EP &= \frac{5\sqrt{2}}{2} \end{align}$ Perhatikan segitiga BPE siku-siku di titik P maka $\begin{align}BP &= \sqrt{BE^2-EP^2} \\ &= \sqrt{\left 5\sqrt{2} \right^2-\left \frac{5\sqrt{2}}{2} \right^2} \\ &= \sqrt{50-\frac{50}{4}} \\ &= \sqrt{\frac{150}{4}} \\ &= \sqrt{\frac{25\times 6}{4}} \\ BP &= \frac{5}{2}\sqrt{6} \end{align}$ Jadi, jarak titik B ke diagonal EG adalah $\frac{5}{2}\sqrt{6}$ cm. Jawaban B Soal No. 13 SIMAK UI 2010 Kode 508. Diberikan prisma tegak segitiga siku-siku dengan alas $\Delta ABC$ siku-siku di B. Panjang rusuk tegak prisma $2\sqrt{2}$ satuan, panjang AB = panjang BC = 4 satuan, maka jarak A ke EF adalah ... satuan. A 4 B $4\sqrt{2}$ C $4\sqrt{3}$ D $2\sqrt{6}$ E $4\sqrt{6}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Bidang ABED tegak lurus dengan bidang BCFE. AE terletak pada bidang ABED dan EF terletak pada bidang BCFE maka $AE\bot EF$. Perhatikan segitiga AEF siku-siku di titik E, maka jarak titik A ke garis EF adalah panjang ruas garis AE. Untuk menghitung panjang AE perhatikan segitiga ABD siku-siku di titik B, maka $\begin{align}AE &= \sqrt{AB^2+BE^2} \\ &= \sqrt{4^2+\left 2\sqrt{2} \right^2} \\ &= \sqrt{16+8} \\ &= \sqrt{24} \\ AE &= 2\sqrt{6} \end{align}$ Jadi, jarak titik A ke EF adalah $2\sqrt{6}$ cm. Jawaban D Soal No. 14 Diberikan bidang empat beraturan dengan panjang rusuk 12 cm. Jika titik P adalah titik tengah rusuk BC, maka jarak titik P ke garis AT adalah ... cm. A $3\sqrt{2}$ B $4\sqrt{2}$ C $6\sqrt{2}$ D $6\sqrt{3}$ E $4\sqrt{3}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik P ke garis AT adalah panjang ruas garis PQ. Perhatikan segitiga TBC, karena TA = TB dan titik P membagi dua sama panjang sisi BC, maka $TP\bot BC$. Perhatikan segitiga TPC siku-siku di titik P maka $\begin{align}TP &= \sqrt{TC^2-PC^2} \\ &= \sqrt{12^2-6^2} \\ &= \sqrt{144-36} \\ &= \sqrt{108} \\ TP &= 6\sqrt{3} \end{align}$ Perhatikan segitiga ABC, karena AB = AC dan titik P membagi dua sama panjang sisi BC, maka $AP\bot BC$ Perhatikan segitiga BPA siku-siku di titik P maka $\begin{align}AP &= \sqrt{AB^2-BP^2} \\ &= \sqrt{12^2-6^2} \\ &= \sqrt{144-36} \\ &= \sqrt{108} \\ AP &= 6\sqrt{3} \end{align}$ Perhatikan segitiga TPA, karena AP = TP dan $PQ\bot AT$ maka TQ membagi dua sama panjang garis AT sehingga kita peroleh $AQ=\frac{1}{2}AT=\frac{1}{2}\times 12=6$ Segitiga AQP siku-siku di titik Q maka $\begin{align}PQ &= \sqrt{AP^2-AQ^2} \\ &= \sqrt{\left 6\sqrt{3} \right^2-6^2} \\ &= \sqrt{108-36} \\ &= \sqrt{72} \\ PQ &= 6\sqrt{2} \end{align}$ Jadi, jarak titik P ke garis AT adalah $6\sqrt{2}$ cm. Jawaban C Soal No. 15 Diketahui balok dengan AB = AD = 6 cm dan AE = $6\sqrt{2}$ cm. Jika K titik tengah EG maka jarak titik H ke garis DK adalah ... cm. A $\sqrt{5}$ B $\frac{3}{5}\sqrt{5}$ C $\frac{6}{5}\sqrt{5}$ D $\frac{3}{5}\sqrt{10}$ E $\frac{6}{5}\sqrt{10}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik H ke garis DK adalah panjang ruas garis HL. Pada segitiga HEF siku-siku di titik E maka $\begin{align}HF &= \sqrt{HE^2+EF^2} \\ &= \sqrt{6^2+6^2} \\ &= \sqrt{72} \\ HF &= 6\sqrt{2} \end{align}$ Titik K di tengah EG maka K juga ditengah HF. $HK=\frac{1}{2}HF=\frac{1}{2}.6\sqrt{2}=3\sqrt{2}$ Segitiga DHK siku-siku di titik H, maka $\begin{align}DK &= \sqrt{HK^2+DH^2} \\ &= \sqrt{\left 3\sqrt{2} \right^2+\left 6\sqrt{2} \right^2} \\ &= \sqrt{18+72} \\ &= \sqrt{90} \\ DK &= 3\sqrt{10} \end{align}$ Luas segitiga DHK $\begin{align}\frac{1}{2}. &= \frac{1}{2}. \\ &= \\ 3\sqrt{10}.HL &= 6\sqrt{2}.3\sqrt{2} \\ HL &= \frac{12}{\sqrt{10}}\times \frac{\sqrt{10}}{\sqrt{10}} \\ HL &= \frac{12}{10}\sqrt{10} \\ HL &= \frac{6}{5}\sqrt{10} \end{align}$ Jadi, jarak titik H ke garis DK adalah $\frac{6}{5}\sqrt{10}$ cm. Jawaban E Soal No. 16 Diketahui kubus yang panjang rusuknya 6 cm. Titik P, Q, dan R berturut-turut merupakan titik tengah rusuk EH, BF, dan CG. Jarak titik P ke garis QR adalah ... cm. A $3\sqrt{7}$ B $3\sqrt{6}$ C $3\sqrt{5}$ D $3\sqrt{3}$ E $2\sqrt{3}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik P ke garis QR adalah panjang ruas garis PS. Karena PQ = PR dan $PS\bot QR$ maka PS membagi dua sama panjang garis QR. Perhatikan, PS dan EQ terletak pada satu bidang. EQ sejajar dengan PS, dan PS = EQ. Perhatikan segitiga EFQ siku-siku di titik F maka $\begin{align}EQ &= \sqrt{EF^2+FQ^2} \\ &= \sqrt{6^2+3^2} \\ &= \sqrt{36+9} \\ &= \sqrt{45} \\ EQ &= 3\sqrt{5} \end{align}$ PS = EQ = $3\sqrt{5}$ Jadi, jarak titik P ke garis QR adalah $3\sqrt{5}$ cm. Jawaban C Soal No. 17 Diketahui limas beraturan dengan rusuk alas $a\sqrt{2}$ cm dan rusuk tegaknya $2a$ cm. Jika O adalah perpotongan diagonal AC dan BD, maka jarak O ke garis TC adalah ... cm. A $\frac{1}{2}a\sqrt{3}$ B $\frac{1}{2}a\sqrt{2}$ C $\frac{1}{3}a\sqrt{3}$ D $\frac{1}{3}a\sqrt{2}$ E $\frac{1}{2}a\sqrt{6}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! $\begin{align}AC &= \sqrt{AB^2+BC^2} \\ &= \sqrt{\left a\sqrt{2} \right^2+\left a\sqrt{2} \right^2} \\ &= \sqrt{4a^2} \\ AC &= 2a \end{align}$ $OC=\frac{1}{2}AC=\frac{1}{2}.2a=a$ Perhatikan segitiga TOC siku-siku di titik O maka $\begin{align}OT &= \sqrt{TC^2-OC^2} \\ &= \sqrt{2a^2-a^2} \\ &= \sqrt{3a^2} \\ OT &= a\sqrt{3} \end{align}$ Luas segitiga TOC $\begin{align}\frac{1}{2}\times TC\times OP &= \frac{1}{2}\times OT\times OC \\ TC\times OP &= OT\times OC \\ 2a\times OP &= a\sqrt{3}\times a \\ OP &= \frac{1}{2}a\sqrt{3} \end{align}$ Jadi, jarak titik O ke garis TC adalah $\frac{1}{2}a\sqrt{3}$ cm. Jawaban A Soal No. 18 Diketahui kubus dengan rusuk 8 cm. M adalah titik tengah EH. Jarak titik M ke AG adalah ... cm. A $4\sqrt{6}$ B $4\sqrt{5}$ C $4\sqrt{3}$ D $4\sqrt{2}$ E 4Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik M ke AG adalah panjang ruas garis MN. Perhatikan segitiga AEM siku-siku di titik E maka $\begin{align}AM &= \sqrt{AE^2+EM^2} \\ &= \sqrt{8^2+4^2} \\ &= \sqrt{64+16} \\ &= \sqrt{80} \\ AM &= 4\sqrt{5} \end{align}$ MG = $AM=4\sqrt{5}$ AG adalah diagonal ruang kubus, maka $AG=s\sqrt{3}=8\sqrt{3}$. Segitiga AMG segitiga sama kaki AM=MG, maka MN adalah garis tinggi yang membagi dua AG di titik N, maka $\begin{align}AN &= \frac{1}{2}.AG \\ &= \frac{1}{2}.8\sqrt{3} \\ AN &= 4\sqrt{3} \end{align}$ Segitiga ANM siku-siku di titik N maka $\begin{align}MN &= \sqrt{AM^2-AN^2} \\ &= \sqrt{\left 4\sqrt{5} \right^2-\left 4\sqrt{3} \right^2} \\ &= \sqrt{80-48} \\ &= \sqrt{32} \\ MN &= 4\sqrt{2} \end{align}$ Jadi, jarak titik M ke AG adalah $4\sqrt{2}$ cm. Jawaban D Soal No. 19 Limas pada gambar di bawah. Merupakan limas segitiga beraturan, jarak titik T ke AD adalah ... A $4\sqrt{3}$ B $6\sqrt{3}$ C 11 D $\sqrt{133}$ E 12Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik T ke AD adalah panjang ruas garis TO. Segitiga BDA siku-siku di titik D maka $\begin{align}AD &= \sqrt{AB^2-BD^2} \\ &= \sqrt{12^2-6^2} \\ &= \sqrt{144-36} \\ &= \sqrt{108} \\ AD &= 6\sqrt{3} \end{align}$ Segitiga TDC siku-siku di titik D maka $\begin{align}TD &= \sqrt{TC^2-DC^2} \\ &= \sqrt{13^2-6^2} \\ &= \sqrt{169-36} \\ TD &= \sqrt{133} \end{align}$ Dengan aturan cosinus pada segitiga TAD maka $\begin{align}\cos \angle TAD &= \frac{TA^2+AD^2-TD^2}{ \\ &= \frac{13^2+\left 6\sqrt{3} \right^2-\left \sqrt{133} \right^2}{ \\ &= \frac{169+108-133}{156\sqrt{3}} \\ &= \frac{144}{156\sqrt{3}} \\ \cos \angle TAD &= \frac{12}{13\sqrt{3}} \end{align}$ Dengan perbandingan trigonometri $\begin{align}\sin \angle TAD &= \frac{\sqrt{\left 13\sqrt{3} \right^2-12^2}}{13\sqrt{3}} \\ &= \frac{\sqrt{507-144}}{13\sqrt{3}} \\ &= \frac{\sqrt{363}}{13\sqrt{3}} \\ &= \frac{11\sqrt{3}}{13\sqrt{3}} \\ \sin \angle TAD &= \frac{11}{13} \end{align}$ Luas segitiga TAD $\begin{align}\frac{1}{2}. &= \frac{1}{2}. \angle TAD \\ TO &= AT.\sin \angle TAD \\ TO &= 13.\frac{11}{13} \\ TO &= 11 \end{align}$ Jadi, jarak titik T ke AD adalah 11 cm. Jawaban C Soal No. 20 Prisma segi-4 beraturan dengan rusuk 6 cm dan tinggi prisma 8 cm. Titik potong diagonal AC dan BD adalah T. Jarak titik D dan TH = ... cm. A $\frac{12}{41}\sqrt{41}$ B $\frac{24}{41}\sqrt{41}$ C $\frac{30}{41}\sqrt{41}$ D $\frac{36}{41}\sqrt{41}$ E $2\sqrt{41}$Penyelesaian Lihat/Tutup Perhatikan gambar berikut! Jarak titik D dan TH adalah panjang ruas garis PD. Segitiga BAD siku-siku di titik A maka $\begin{align}BD &= \sqrt{BA^2+AD^2} \\ &= \sqrt{6^2+6^2} \\ &= \sqrt{72} \\ BD &= 6\sqrt{2} \end{align}$ $\begin{align}TD &= \frac{1}{2}BD \\ &= \frac{1}{2}.6\sqrt{2} \\ TD &= 3\sqrt{2} \end{align}$ Segitiga TDH siku-siku di titik D maka $\begin{align}TH &= \sqrt{TD^2+DH^2} \\ &= \sqrt{\left 3\sqrt{2} \right^2+8^2} \\ &= \sqrt{18+64} \\ TH &= \sqrt{82} \end{align}$ Luas segitiga TDH $\begin{align}\frac{1}{2}\times TH\times PD &= \frac{1}{2}\times TD\times DH \\ TH\times PD &= TD\times DH \\ \sqrt{82}\times PD &= 3\sqrt{2}\times 8 \\ PD &= \frac{24}{\sqrt{41}}\times \frac{\sqrt{41}}{\sqrt{41}} \\ PD &= \frac{24}{41}\sqrt{41} \end{align}$ Jadi, jarak titik D dan TH adalah $\frac{24}{41}\sqrt{41}$. Jawaban B Subscribe and Follow Our Channel
Jaraktitik C ke bidang DPQH adalah Jarak titik Eke garis AI: Jarak titik C ke bidang AFH sama dengan jarak C ke garis AI, yaitu: Video liΓͺn quan. Related Posts. Toplist Top 13 mybelline fit me matte and poreles terbaik 2022. Berdasarkan percobaan satu dan lima untuk kenaikan suhu sebesar 10 Β° celcius laju reaksi akan.
Diketahui kubus dengan panjang AB= 10 cm. Tentukan a. jarak titik F ke garis AC b. jarak titik H ke garis DF Diketauhi Panjang AB = 10 cm Pembahasan Kubus dengan rusuk a cm makadiagonal sisi = a√2 cm diagonal ruang = a√3 cm Contoh diagonal sisisisi alas AC dan BDsisi depan AF dan EB dan seterusnya Contoh diagonal ruangAG, HB, DF dan EC a Jarak F ke AC buat segitiga AFCkarenaAF = diagonal sisi depanFC = diagonal sisi kananAC = diagonal sisi alas maka segitiga AFC adalah segitiga sama sisi dengan sisi = 10√2 cm Misal O adalah titik tengah AC AO = OC = 5√2 cmJarak F ke AC adalah FOdengan pythagorasFO = √AFΒ² – AOΒ²FO = √10√2Β² – 5√2Β²FO = √200 – 50FO = √150FO = √25 . √6 FO = 5√6 cm Jadi jarak F ke garis AC = 5√6 cm Cara Cepat Tinggi segitiga sama sisi dengan panjang sisinya s adalah = 1/2 s√3,Karena segitiga AFC adalah segitiga sama sisi dengan sisi 10√2 cm maka tinggi segitiga tersebut FO adalah= 1/2 . 10√2 . √3 = 5√6 cm b Jarak H ke DF Buat segitiga HDF dan segitiga HDF adalah segitiga siku-siku di HUkuran sisi-sisinyaHD = 10 cm => rusuk kubusHF = 10√2 cm => diagonal sisi kubus DF = 10√3 cm => diagonal ruang Jarak H ke DF adalah tinggi segitiga HDF dengan alas DF Jika alasnya HF maka tingginya HDJika alasnya DF maka tingginya x Dengan kesamaan luas segitiga 1/2 Γ— alas Γ— tinggi maka1/2 Γ— DF Γ— x = 1/2 Γ— HF Γ— HDDF Γ— x = HF Γ— HDx = HF Γ— HD/DFx = 10√2 Γ— 10/10√3x = 10√2/√3 . √3/√3x = 10√6/3 x = 10/3 √6 Jadi jarak H ke garis DF adalah 10/3 √6 seorang pembalap motor mengendarai motornya dengan kecepatan 31 km/jam. jarak yang ditempuh adalah 217 km. jika pembalap start pada pukul pagi p … ukul berapakah ia mencapai finish?mohon dijawab terus menggunakan cara ya​ Dalam permainan yang terdapat nilai negatif. Nilai Dayu 2 kali lebih besar dari nilai Siti. Sedangkan nilai Siti -10 lebih kecil dari nilai Lani. Jika … nilai Lani -60, maka nilai Dayu adalah …. a. -32 b. -34 c. -35 d. -37dan caranya​ Bakso kotak ini berukuran 4√2 cm akan dikemas kedalam kesebuah kubis mika berukuran 50√2 berapa buah bakso kotak untuk memenuhi kubus mika tersebut? ​ 2/3 Γ— 6/7 4/5 =…HARUS PAKAI CARA​ 5 per 2 + 1 per 2 =caranya juga yamksh ​ A. Barisa Barisan adalah pola bilangan sederhana yang menentukan bilangan berikut nyaβ€’β€’β€’β€’Latihan1. 6 , 5 , 4 , ….2. 2 , 9 , 16 , 23 , ….3. 3 , 9 , … 27 , ….4. 4 , 12 , 20 , ….5. 1 , 5 , 25 , ….plss jawabb, di kumpulin besokk​ Hasil dari ∫ 3 x 2 βˆ’ 5 x + 4 dx =…?Nt Helps Please Ges _/\_ ^_^パ​ 1 3/5 + 2 4/7 – 1 1/3 = …HARUS PAKAI CARA​ tentukan HP penyelesaian dari persamaan berikut dan gambarkan grafiknya3x + 2y = 123x + 5y = 15​ sin 3x =cos-2x , 0Β° ≀ 2 ≀ 360°​ Ingat! Jarak titik ke garis adalah lintasan terpendek yang menghubungkan titik dan tegak lurus terhadap garis. Panjang diagonal ruang kubus yang memiliki rusuk adalah . Panjang diagonal bidang kubus yang memiliki rusuk adalah . Jika dalam suatu segitiga terdapat 2 garis yang dapat dijadikan tinggi dan dan 2 garis yang dapat dijadikan alas dan , maka berlaku . HF adalah diagonal bidang, sehingga . DF adalah diagonal ruang, sehingga . Perhatikan segitiga DFH memiliki 2 garis tinggi dan 2 garis alas, sehingga berlaku rumus kesamaan luas segitiga, maka Jadi, jarak titik H ke garis DF adalah . Jaraktitik h ke garis df alternatif penyelesaian gambar . Jarak titik f ke garis ac b. Jarak titik h ke garis df adalah cm. Of = oh = a . Diketahui kubus panjang ab = 10 cm. Play this game to review mathematics. Gh merupakan rusuk kubus yang panjangnya 12 cm. Jarak titik h ke garis df. Jarak titik h ke garis df! Kelas 12 SMADimensi TigaJarak Titik ke GarisDiketahui kubus dengan panjang rusuk 6 cm. Jarak titik H ke garis DF adalah ... Titik ke GarisDimensi TigaGEOMETRIMatematikaRekomendasi video solusi lainnya0156Diketahui kubus dengan panjang rusuk 6 cm. Jara...0148Diketahui kubus ABCD. EFGH dengan panjang rusuk 8 cm. Jar...0157Diketahui kubus dengan panjang rusuk 10 cm. Tit...0140Diketahui kubus ABCD EFGH dengan panjang rusuk 6 cm. Jara...Teks videoHaiko fans, besok kita diberikan kubus dengan panjang rusuknya 6 cm di sini kita akan mencari jarak titik h ke garis DF jadi caranya kita hubungan Garis dari titik h ke ujung garis DF jadi hacker diketahui garis dan HF tergaris terbentuk segitiga siku-siku di a panjang AB adalah 6 sama dengan rusuk a episode diagonal sisi pada kubus rumusnya rak2 batik panjangnya 6 √ 2 adalah diagonal ruang pada kubus rumusnya rusuk √ 3 / panjangnya adalah 6 akar 3 jarak h ke garis DF adalah reaksi h ke DF sehingga siku-siku nih kita untuk mencari panjang ao kita menggunakan konsep segitigabahwa luas segitiga itu adalah setengah kali alas kali tinggi yang mana Allah sama tinggi harus saling tegak lurus nanti kita gunakan konsep luas dengan luas yang pertama kita gunakan tegak lurus yang ini nggak kita peroleh setengah tinggal ikan awas itu DM tingginya sama dengan luas Yang kedua kita gunakan siku-siku di A H sehingga setengah dikalikan alasnya tingginya DH Nah di sini tangannya dapat kita coret ya lalu panjang DF adalah 6 √ 3 dikalikan h o = 6 maka 2 dikalikan dengan 6 Anis inangnya dapat kita coret harus kita dapatkan bahwa o = 6 akar 2 per akar 3 dirasionalkan kitaAkar 3 per akar 3 sehingga kita peroleh 6 akar 6 per 3 yang mana 6 per 3 itu udah 2 jadi kita punya 2 √ 6 cm. Jadi TV ini jawabannya adalah sampai jumpa di Pertanyaan selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Jawabanpaling sesuai dengan pertanyaan 31. Pada kubus ABCD.EFGH dengan panjang rusuk 6" "cm, maka jarak titik H ke garis DF adala
– Kubus merupakan bangun tiga dimensi yang memiliki 6 buah sisi, 12 rusuk, dan 8 sudut yang kongruen. Pada materi kali ini kita akan mempelajari bagaimana cara menyelesaikan soal menghitung panjang rusuk dan besar sudut pada kubus. Contoh soal perhitungan panjang dan sudut kubus Contoh soal 1 menghitung jarak antar titik dalam kubus Diketahui kubus dengan panjang rusuk 8 cm. Jarak titik H ke garis AC adalah … NURUL UTAMI Garis yang menunjukkan jarak H ke AC pada kubus Untuk memudahkan perhitungan, kita dapat mengeleluarkan segitiga ACH sebaga berikut NURUL UTAMI Segitiga sama kaki ACH Dalam gambar terlihat bahwa AH, AC, dan HC merupakan diagonal sisi dari kubus. Artinya, ketiga garis tersebut memiliki panjang yang sama. Melansir dari Splash Learn, panjang diagonal sisi suatu kubus adalah √2 panjang AH = AC = HC = panjang rusuk x √2 = 8√2. Jarak titik H ke garis AC disimbolkan dengan garis Ho yang membentuk sudut siku-siku. Adapun, panjang Ao = oC = Β½ AC = Β½ 8√2 = 4√2. Baca juga Unsur-Unsur Kubus dan Balok Sehingga, panjang Ho dapat dihitung dengan rumus pitagoras sebagai berikutHo = √AHΒ² - HoΒ² = √8√2Β² – 4√2Β² = √64 x 2 – 16 x 2 = √128 – 32 = √96 = √16 x 6 = 4√6Maka, jarak titik H ke garis AC pada kubus adalah 4√6 cm. Contoh soal 2 menghitung perbandingan geometri sudut kubus Besar sudut antara ruas garis AG dan bidang EFGH pada kubus adalah a. Nilai cos a adalah … Jawaban
Jadi jarak titik H ke garis AG adalah 8/3√6 cm. Baca juga: Sistematika Surat Lamaran Pekerjaan [Pembahasan Modul Kelas 12] Bahasa Indonesia Bagian 2. Nah, itulah sedikit pembahasan seputar modul matematika umum kelas 12 tentang jarak titik ke garis dalam ruang bidang datar. Jadi, intinya jarak titik ke garis adalah ruas garis yang tegak ο»ΏJarak titik ke garis sama dengan jarak titik ke proyeksi titik tersebut pada garis. Rumus jarak titik ke garis digunakan saat diketahui letak koordinat sebuah titik dan persamaan garis. Di mana, letak koordinat titik dinyatakan dalam pasangan bilangan absis x dan ordinat yaitu Px, y. Sedangkan persamaan garis memiliki bentuk persamaan umum ax + by + c = 0 atau y = mx + c. Sobat idschool dapat menghitung panjang ruas garis yang menghubungkan jarak titik dengan garis melalui rumus jarak titik ke garis seperti pada bahasan di bawah. Sebagai contoh, diketahui titik P terletak pada koordinat 3, 4 dan sebuah garis memiliki persamaan g 3x + y + 12 = 0. Berapakah jarak titik P3, 4 ke garis 3x + y + 6 = 0? Baca Juga Cara Menentukan Persamaan Garis Singgung Parabalo Untuk mengetahui berapa jarak titik P ke garis g dapat diperoleh menggunakan rumus jarak titik ke garis. Bagaimana bentuk rumus jarak titik ke garis? Bagaimana penggunaan rumus jarak titik ke garis? Sobat idschool dapat mencari tahu jawabannya melalui ulasan di bawah. Table of Contents Bentuk Umum Rumus Jarak titik ke Persamaan Garis Contoh Soal dan Pembahasan Contoh 1 – Penggunaan Rumus Jarak Titik ke Garis Contoh 2 – Penggunaan Rumus Jarak Titik ke Garis pada Lingkaran Contoh 3 – Penggunaan Rumus Jarak Titik ke Garis pada Lingkaran Bentuk Umum Rumus Jarak titik ke Persamaan Garis Jarak titik ke titik menyatakan panjang ruas garis yang menghubungkan kedua titik tersebut. Sedangkan jarak titik ke garis sama dengan panjang ruas garis yang menghubungkan titik ke proyeksi titik tersebut pada garis. Proyeksi adalah penarikan bayangan ke suatu bidang dengan arah tegak lurus dengan bidang tersebut. Sehingga proyeksi titik ke garis adalah penarikan titik ke garis dengan arah tegak lurus garis. Panjang ruas garis yang menghubungkan titik dengan proyeksi titik pada garis sama dengan jarak titik ke garis. Ruas garis yang menghubungkan titik dan titik proyeksinya akan saling tegak lurus dengan garis. Ruas garis lain yang menghubungkan titik ke garis dengan arah tidak tegak lurus bukan merupakan jarak titik ke garis. Letak titik pada bidang koordinat dinyatakan dalam pasangan dua bilangan berurutan yang disebut absis sumbu x dan ordinat sumbu y. Sedangkan sebuah garis memiliki bentuk persamaan linear dengan dua variabel seperti ax + by + c = 0. Rumus jarak titik ke persaman garis sesuai dengan bentuk umum berikut. Baca Juga 3 Cara Menentukan Persamaan Garis Singgung pada Lingkaran Contoh Soal dan Pembahasan Beberapa contoh soal di bawah dapat sobat idschool gunaka untuk menambah pemahaman bahasan di atas. Setiap contoh soal yang diberikan dilengkapi dengan pembahasannya. Sobat idschool dapat menggunakan pembahasan tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat Berlatih! Contoh 1 – Penggunaan Rumus Jarak Titik ke Garis Sebuah garis terletak pada bidang datar dengan persamaan β„“ 3x + 4y = 15. Jika titik Pβ€’5, 5 terletak pada bidang yang sama dengan garis β„“ maka jarak titik P ke garis β„“ adalah … satuanA. 8B. 6C. 4D. 3E. 2 PembahasanJarak titik Pβ€’5, 5 ke garis β„“ 3x + 4y = 15 dapat dicari menggunakan rumus jarak titik ke garis seperti penyelesaian pada cara berikut. Jadi, jarak titik Pβ€’5, 5 ke garis β„“ 3x + 4y = 15 adalah 2 E Contoh 2 – Penggunaan Rumus Jarak Titik ke Garis pada Lingkaran Persamaan lingkaran dengan pusat di titik 2, β€’3 dan menyinggung garis x = 5 adalah ….A. x2 + y2 + 4x β€’ 6y + 9 = 0B. x2 + y2 β€’ 4x + 6y + 9 = 0C. x2 + y2 β€’ 4x + 6y + 4 = 0D. x2 + y2 β€’ 4x β€’ 6y + 9 = 0E. x2 + y2 + 4x β€’ 6y + 4 = 0 PembahasanDiketahui sebuah lingkaran dengan titik pusat 2, β€’3 dengan jari-jari yang belum diketahui. Keterangan lain yang diberikan adalah lingkaran tersebut meyinggung garis x = 5. Garis yang menyinggung lingkaran memotong lingkaran pada satu titik, di mana titik tersebut berada pada busur lingkaran. Di mana, jari-jari lingkaran dan garis yang menyinggung lingkaran selalu tegak lurus. Artinya jarak titik pusat lingkaran ke garis singgung lingkaran sama dengan panjang jari-jari lingkaran. Dengan demikian, jari-jari lingkaran dapat diperoleh dengan menghitung jarak titik P2, β€’3 ke garis x = 5. Cara menghitung jarak titik P2, β€’3 ke garis x = 5 dan cara menentukan persamaan lingkaran diselesaikan seperti pada penyelesaian berikut. Jadi, persamaan lingkaran dengan pusat di titik 2, β€’3 dan menyinggung garis x = 5 adalah x2 + y2 β€’ 4x + 6y + 4 = C Contoh 3 – Penggunaan Rumus Jarak Titik ke Garis pada Lingkaran Persamaan lingkaran yang berpusat di titik β€’1, 2 dan menyinggung garis x + y + 7 = 0 adalah ….A. x2 + y2 + 2x + 4y β€’ 27 = 0B. x2 + y2 + 2x β€’ 4y β€’ 27 = 0C. x2 + y2 + 2x β€’ 4y β€’ 32 = 0D. x2 + y2 β€’ 4x β€’ 2y β€’ 32 = 0E. x2 + y2 β€’ 4x + 2y β€’ 7 = 0 PembahasanPersamaan lingkaran dapat dibentuk dari pusat lingkaran dan jari-jari lingkaran. Dari informasi yang diberikan pada soal diketahui bahwa lingkaran terletak pada titik β€’1, 2 dengan jari-jari yang belum di ketahui. Panjang jari-jari lingkaran dapat ditentukan melalui rumus jarak titik ker garis yaitu untuk titik β€’1, 2 dan garis x + y + 7 = 0. Menghitung jarak titik β€’1, 2 ke garis x + y + 7 = 0 Sehingga diperoleh panjang jari-jari lingkara = jarak titik β€’1, 2 ke garis x + y + 7 = 0 sama dengan r = 4√2 satuan. Selanjutnya adalah menentukan persamaan lingkaran dengan titik pusat β€’1, 2 dengan jari-jari r = 4√2 satuan. Persamaan lingkaran [Pβ€’1, 2; r = 4√2]x β€’ β€’12 + y β€’ 22 = 4√22x + 12 + y β€’ 22 = 42 Γ— √22x2 + 2x + 1 + y2 β€’ 4y + 4 = 16 Γ— 2x2 + y2 + 2x β€’ 4y + 1 + 4 = 32x2 + y2 + 2x β€’ 4y + 5 β€’ 32 = 0x2 + y2 + 2x β€’ 4y β€’ 27 = 0 Jadi, persamaan lingkaran yang berpusat di titik β€’1, 2 dan menyinggung garis x + y + 7 = 0 adalah x2 + y2 + 2x β€’ 4y β€’ 27 = B Demikianlah tadi ulasan rumus jarak titik ke garis beserta contoh penggunannya dalam menyelesaikan soal. Terima kasih sudah mengunjungi idschooldotnet, semoga bermanfaat! Baca Juga Cara Menentukan Persamaan Lingkaran yang Diktahui Koordinat 3 Titik yang Terletak pada Busur Lingkaran Diagonalruang = panjang rusuk Diagonal sisi = panjang rusuk Dari soal diperoleh ilustrasi gambarnya adalah Jarak titik H ke garis AC adalah adalah HO dengan O adalah pertengahan AC. DH = 6 cm Garis BD dan AC berpotongan tegak lurus dan sama besar di titik O, sehingga: Jadi, jarak titik H ke garis AC adalah Mau dijawab kurang dari 3 menit?
PembahasanIngat! Jarak titik ke garis adalah lintasan terpendek yang menghubungkan titik dan tegak lurus terhadap garis. Pada segitiga siku-siku berlaku teorema Pythagoras dengan adalah sisi siku-siku dan sisi miring. Panjang diagonal bidang kubus yang memiliki rusuk adalah . Diketahui kubus dengan panjang seperti gambar berikut Jarak titik F ke garis AC adalah FO. Pada kubus ABCD AC, CF dan AF adalah diagonal bidang kubus sehingga . Segitiga ACF adalah segitiga sama sisi. Sehingga jika kita tarik garis dari titik F tegak lurus AC FO membagi 2 sama panjang . Perhatikan segitiga COF siku-siku di O, sehingga berlaku teorema Pythagoras sebagai berikut Jadi, jarak titik F ke garis AC adalah .Ingat! Diketahui kubus dengan panjang seperti gambar berikut Jarak titik F ke garis AC adalah FO. Pada kubus ABCD AC, CF dan AF adalah diagonal bidang kubus sehingga . Segitiga ACF adalah segitiga sama sisi. Sehingga jika kita tarik garis dari titik F tegak lurus AC FO membagi 2 sama panjang . Perhatikan segitiga COF siku-siku di O, sehingga berlaku teorema Pythagoras sebagai berikut Jadi, jarak titik F ke garis AC adalah .
Jawabanterverifikasi Jawaban jarak titik H ke garis DF adalah . Pembahasan Ingat! Jarak titik ke garis adalah lintasan terpendek yang menghubungkan titik dan tegak lurus terhadap garis. Panjang diagonal ruang kubus yang memiliki rusuk adalah . Panjang diagonal bidang kubus yang memiliki rusuk adalah . Kelas 12 SMADimensi TigaJarak Titik ke GarisDiketahui kubus dengan panjang AB=10. Tentukan a. Jarak titik F ke garis AC b. Jarak titik H ke garis DFJarak Titik ke GarisDimensi TigaGEOMETRIMatematikaRekomendasi video solusi lainnya0156Diketahui kubus dengan panjang rusuk 6 cm. Jara...0148Diketahui kubus ABCD. EFGH dengan panjang rusuk 8 cm. Jar...0157Diketahui kubus dengan panjang rusuk 10 cm. Tit...0140Diketahui kubus ABCD EFGH dengan panjang rusuk 6 cm. Jara...Teks videoHalo Google pada soal ini kita diberikan kubus abcd efgh dengan panjang AB adalah 10 kita akan menentukan jarak titik f ke garis AC Jarak titik h ke garis DF bisa kita ilustrasikan kubus abcdefgh nya terlebih dahulu di sini Abinya sepanjang 10 m karena abcdefgh ini merupakan kubus maka setiap rusuk ini panjangnya sama seperti panjang AB kita melihat dari yang untuk Jarak titik f ke garis AC kita Gambarkan terlebih dahulu untuk garis AC nya yang mana Jarak titik f ke garis AC berarti kita tarik Garis dari titik f ke AC nya yang mana garis tersebut tegak lurus terhadap AC kalau kita misalkan disini adalah p maka FB menunjukkan jarak titikKe garis AC Nah kalau kita perhatikan untuk segitiga ABD ini merupakan segitiga sama sisi sebab baik a c c f f a ini merupakan diagonal bidang pada kubus nya oleh karena di sini FT tegak lurus terhadap AC maka FP ini merupakan garis tinggi pada segitiga ABC garis tinggi pada suatu segitiga sama sisi ini berarti juga merupakan garis berat garis berat ini adalah garis yang ditarik dari suatu titik sudut segitiga ke Sisi yang ada di hadapannya sehingga membagi Sisi yang ada dihadapannya menjadi dua sama panjang. Berarti di sini untuk membagi ac-nya menjadi 2 sama panjang untuk menentukan panjang fb-nya disini kita perlu menentukan panjang AC sertakarena Aceh dan CF merupakan diagonal bidang pada suatu kubus kita perlu ingat rumus dalam menentukan diagonal bidang pada kubus untuk panjang diagonal bidang untuk suatu kubus sama dengan panjang rusuknya dikali akar 2 berarti karena AC dan CF adalah diagonal bidang kita akan Aceh panjangnya = CF yaitu 10 akar 2 akar 6 BC ini setengahnya dari AC maka bisa kita peroleh PC = setengah dikali 10 akar 2 yaitu = 5 akar 2 untuk menentukan panjang ST bisa kita perhatikan bahwa di sini fpc adalah segitiga siku-siku sehingga kita bisa gunakan teorema Pythagoras dihadapan sudut siku-sikunya yaitu di sudut P kita punya Sisi CF ini adalah sisi miring dari segitigaBerarti untuk kita ingat teorema Pythagoras menyatakan bahwa kuadrat sisi miring sama dengan jumlah kuadrat Sisi Sisi Lainnya bisa kita Tuliskan CF kuadrat = P kuadrat q + r t kuadrat c f nya adalah 10 √ 2 Jadi kita kuadratkan ini sama dengan PC nya adalah 5 √ 2. Jadi kita kuadratkan ditambah b kuadrat untuk fb-nya yang akan kita cari kita perlu ingat bahwa kalau kita punya akar m dikali akar m Maka hasilnya = M maka suku akar 2 dikali 10 akar 2 kita akan peroleh 10 * 10 adalah 100 * √ 2 * √ 2 adalah 2 maka kita peroleh juga di sini 25 * 2 Nah kita selesaikan maka kita akan peroleh 200 = 50 + 4 P kuadratkita pindahkan 50 nya dari ruas kanan ke ruas kiri maka kita akan peroleh 150 = f t kuadrat jika kita Tuliskan FT kuadrat = 50 kuadrat di ruas kiri bisa kita pindahkan menjadi akar di ruas kanan namanya sebenarnya kita akan punya plus minus akar 150 namun f p menunjukkan panjang dari suatu sisi segitiga maka tidak mungkin kita Nyatakan dalam bilangan negatif jadi kita ambil yang positifnya saja sehingga f t = akar 150 untuk akar 150 bisa kita Sederhanakan dengan kita ubah 156 menjadi Perkalian antara 2 buah bilangan yang mana salah satu bilangan yang merupakan bilangan kuadrat 150 bisa kita tulis menjadi 25 * 6 yang benar 25 adalah 5 kuadrat X dikalisehingga fb-nya = akar dari 5 kuadrat dikali akar 6 berdasarkan sifat pada bentuk akar bentuk akar 5 kuadrat kita gunakan juga sifat pada bentuk akar maka kita peroleh F = 5 akar 6 satuan panjang jadi karena FP menunjukkan jarak dari titik f ke garis AC maka jarak titik f ke garis AC nya adalah 5 akar 6 satuan panjang selanjutnya untuk yang B B Gambarkan garis DF sehingga jarak titik h ke garis DF kita tarik Garis dari titik h ke DF nya yang tegak lurus kita misalkan ini adalah titik a maka merupakan Jarak titik h ke garis DF Nah kalau misalkan kita tarik garis seperti ini kita akan peroleh bdhf ini merupakan suatu prosesPanjang berarti di sini di sini di sini dan di sini sudut-sudutnya adalah 90 derajat sehingga ini merupakan segitiga siku-siku berarti untuk menentukan panjang ao kita bisa gunakan kesamaan luas segitiga kita membutuhkan panjang AF serta kita membutuhkan panjang Dr oleh karena a f merupakan diagonal bidang maka F = 10 akar 2. Nah DF nya ini merupakan diagonal ruang maka kita bisa peroleh berdasarkan rumus pada diagonal ruang untuk suatu kubus panjangnya kita peroleh untuk diagonal ruang berdasarkan rusuk √ 3 berarti DF nya ini = 10 akar 3 selanjutnya kita gunakan rumus luas segitiga yang mana luasnya diperoleh dariQ * alas * tinggi Nah kita punya dua sudut pandang dalam menentukan alas serta tinggi dari segitiga pada segitiga DHL yang mana karena ini sama-sama segitiga DHF berarti kita akan peroleh sebenarnya hasilnya sama hanya saja rumusnya disini kita akan peroleh berbeda berdasarkan sudut pandang yang pertama kalau kita pandang hf ini merupakan alasnya maka tingginya adalah DH selain itu juga bisa kita pandang DF adalah alasnya maka tingginya adalah h. O tentunya Allah serta tinggi segitiga ini saling tegak lurus untuk kedua ruas bisa sama-sama kita kalikan dengan 2 final kita substitusikan saja HF nya kemudian DS nya dan D hanya disini adalah rusuk dari kubus Nya sehingga bisa kita Tuliskan di ruas kiri kitaakar 2 dikali 10 dan di ruas kanan 10 akar 3 dikali H untuk kedua ruas bisa sama-sama kita / 10 √ 3 maka disini untuk yang 10 nya bisa sama-sama kita coret kita akan peroleh 10 akar 2 per akar 3 = H atau kita Tuliskan seperti ini dan ini adalah bentuk pecahan yang penyebutnya terdapat bentuk akar maka bisa kita rasionalkan dengan cara kita memanfaatkan bentuk Sekawan dari bentuk akar pada penyebut bentuk Sekawan dari misalkan akar m adalah akar m itu sendiri maka bentuk Sekawan dari √ 3 adalah √ 3 yang mana kita kalikan pembilang serta sama-sama dengan bentuk Sekawan dari bentuk akar pada penyebutnya atau bisa kita Tuliskan ini dikali dengan akar 3 per akar 3berdasarkan sifat pada bentuk akar maka kita akan memperoleh haknya ini sama dengan 10 kali akar 2 dikali 3 per akar 3 dikali akar 3 adalah 3 = 10 per 3 akar 6 satuan panjang jadi dapat kita simpulkan Jarak titik h ke garis DF adalah 10 per 3 akar 6 satuan panjangSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul ZQ7g1.
  • 52xe6hgw9r.pages.dev/137
  • 52xe6hgw9r.pages.dev/212
  • 52xe6hgw9r.pages.dev/330
  • 52xe6hgw9r.pages.dev/28
  • 52xe6hgw9r.pages.dev/444
  • 52xe6hgw9r.pages.dev/19
  • 52xe6hgw9r.pages.dev/437
  • 52xe6hgw9r.pages.dev/167
  • jarak titik h ke garis df